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Abstract. We present a complete theoretical description of atomic storage states in the multimode frame-
work by including spatial coherence in atomic collective operators and atomic storage states. We show
that atomic storage states are Dicke states with the maximum cooperation number. In some limits, a set
of multimode atomic storage states has been established in correspondence with multimode Fock states of
the electromagnetic field. This gives better understanding of both the quantum and coherent information
of optical field can be preserved and recovered in ultracold medium. In this treatment, we discuss in de-
tail both the adiabatic and dynamic transfer of quantum information between the field and the ultracold
medium.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light –
03.67.-a Quantum information

1 Introduction

In the interaction between optical fields and atoms, a pho-
ton can be absorbed by an atom and then the excited atom
can re-emit a photon by either spontaneous or stimulated
emission. In this process the atom stores the energy of the
field and releases it back to the field. Recently, theoretical
and experimental studies have shown that both the quan-
tum state and coherent information of the field can be
stored in an atomic medium [1–9]. A very recent experi-
ment witnesses that a signal pulse of light can be stored in
an ultracold collective of atoms for up to a millisecond [1].

The basic scheme for storage of light information is
carried out by electromagnetically induced transparency
(EIT) [10,11]. N three-level atoms with one upper level
|a〉 and two lower levels |b〉 and |c〉 interact resonantly
with both the signal and the control beams. The weak
signal beam and the strong control beam drive the atomic
transitions |a〉−|b〉 and |a〉−|c〉, respectively. Early inves-
tigations have shown that EIT permits the propagation
of the light signal through an otherwise opaque atomic
medium and that the group velocity of the signal pulse is
greatly reduced [12–14]. In a recent experiment [1], when
the control beam is turned off, the signal pulse is stopped
and stored in atomic medium. This effect can be under-
stood in terms of dark states. Dark states are combination
states of the photon state and the atomic storage state.
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The bosonic quasiparticles in the dark state are called po-
laritons. When the strength of the control field is changed
adiabatically, both the quantum state and the coherent
information transfer between the signal field and the col-
lective atoms [3,4].

Due to the fact that dark states are eigenstates of the
EIT interaction Hamiltonian, the transfer of the quan-
tum state between the field and the atomic ensemble can
be quasi-stationary in the adiabatic limit. Furthermore,
mapping and storage of quantum information of light in an
atomic medium may occur in a dynamical process without
forming dark states. For example, reference [7] has shown
that in a general Raman interaction, with a large detuning
to the intermediate level, the nonclassical features of the
quantum field can be mapped onto the coherence of the
lower atomic doublet, distributed over the atomic cloud.
However, a very recent theoretical study has shown that,
in the EIT model, an adiabatic change of the control field
is not necessary, and even a fast switching of the control
field can be used in the writing and reading quantum in-
formation of the signal field [8].

In all of these models, collective atoms play the role of
quantum memory. The mechanism of storage of the quan-
tum field in a medium is based on establishing atomic
storage states (or atomic memory states) which record
all the information of the field. It is not surprising that
photons can be transferred to atomic excitations in transi-
tion interactions. Physically, the question is how collective
atoms record the coherence of an electromagnetic field.
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In the early theoretical work [15], Dicke studied the co-
herence and cooperation effects in atomic ensemble. He
defined collective atomic operators as the sum of all the in-
dividual atomic operators, retaining the angular momen-
tum properties. The Dicke states are the eigenstates of the
angular momentum operators. In Dicke’s paper, he con-
sidered two cases: the gas volumes have dimensions either
smaller or larger than the radiation wavelength. For the
latter case, the spatial phase distribution of the field has
been included into the collective atomic operators.

In the pioneering work contributed by Fleischhauer
and Lukin [3–5,9] the theory of atomic storage states ba-
sically consists of a single-mode description. In this pa-
per, we present a complete description of atomic storage
states in a multimode framework. A preliminary version
of the briefly analysis described in this paper is given in
reference [16]. Similarly, as in the second case of Dicke’s
work, we incorporate spatial coherence into the collective
atomic lower and upper operators. We indicate that, in
the multimode description, atomic collective operators can
behave as multimode bosonic operators, under the condi-
tions of low atomic excitation and appropriate radiation
wavelength; which is much larger than the average interval
of atoms and less than the propagation length of medium.
Aside from the original definition of Dicke states, we in-
troduce atomic storage states with explicit expressions by
containing spatial coherence of the radiation field, and in-
dicate that they are Dicke states with the maximum co-
operation number. The significant advance is that, under
the conditions shown above, a set of multimode atomic
storage states is established in correspondence with mul-
timode Fock states of the electromagnetic field. This gives
a better understanding of how both quantum and coherent
information, of electromagnetic fields, can be preserved in
atomic media. A detailed theoretical description of mul-
timode dark states in the EIT model is discussed. Fur-
thermore, parallel to the “stationary polariton” in EIT,
we show the “dynamic polariton” formed in coupled har-
monic oscillators. This illustrates the mechanism for the
dynamic quantum transfer between field and macroscopic
matter.

2 Atomic collective operators
with the bosonic commutation

We consider N ultracold collective atoms which are ap-
proximately stationary at their positions. At very low
temperature close to the critical temperature for Bose-
Einstein condensation [1], the average kinetic energy of
atoms is greatly reduced. On the other hand, at low tem-
perature, atoms are densely packed within a wavelength
of optical field. The free path of an atom is much less than
the wavelength, hence it confines the range of atomic mo-
tion. What the “still atoms” means is that, in the char-
acteristic time of the system, the scale of motion for the
centre-of-mass of the atoms is much less than the wave-
length of the optical electromagnetic field involved. The
two levels of atoms |b〉 and |c〉 interact with some optical

field of wavevector k. We assume that N is a large number
and the largest proportion of the population of the atoms
is in level |b〉 throughout the system evolution, so that the
completeness relation is given by

N =
N∑
j=1

(|bj〉〈bj |+ |cj〉〈cj |) '
N∑
j=1

|bj〉〈bj |. (1)

It is not necessary that |b〉 is the ground state, for instance,
in the case of EIT the level |c〉 can be lower or equal to
|b〉. For the sake of convenience, we call |b〉 the “ground”
state and |c〉 the “excited” state.

In the interaction between field and atomic medium,
the spatial coherence of the field affects only the local
atoms. In the approximation of “still atoms”, the jth atom
located at position zj suffers a local field strength with a
phase exp(ikzj). For this reason, we define the lower and
the upper operators of the collective atoms as

σk =
1√
N

N∑
j=1

|bj〉〈cj | exp(−ikzj), (2a)

σ†k =
1√
N

N∑
j=1

|cj〉〈bj | exp(ikzj), (2b)

where k is the wavevector of the optical electromagnetic
field interacting with the transition |b〉−|c〉. We notice that
this kind of collective atomic operator, containing spatial
coherence, was first introduced by Dicke, who investigated
the super-radiate effect in collective atoms, in the case of
medium dimensions larger than radiation wavelength [15].
In order to avoid the difficulties of the occurrence of the
center-of-mass motion of atoms which may destroy the co-
herence, in Dicke’s paper, he assumed the molecules are so
massive that their center-of-mass coordinates will be then
treated as time-independent parameter in equation. Now,
this assumption can be implemented in the development
of the ultracold technique.

For the purpose of controllable storage, the atomic
transition |b〉−|c〉 is usually a multi-photon process includ-
ing signal and control photons. Equation (2a) should be
replaced by

σk =
1√
N

N∑
j=1

|bj〉〈cj | exp[−i(k − kc)zj ], (3a)

σk =
1√
N

N∑
j=1

|bj〉〈cj | exp[−i(k + kc)zj ], (3b)

where k and kc are respectively the wavevectors for the
signal field and the control field. Equation (3a) describes
a Raman transition, whereas equation (3b) describes a
two-photon cascade transition.
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The commutation relations for these atomic operators
are written as

[σk, σk′ ] = [σ†k, σ
†
k′ ] = 0, (4a)

[σk, σ
†
k′ ] = (1/N)

N∑
j=1

(|bj〉〈bj | − |cj〉〈cj |) exp[−i(k − k′)zj ].

(4b)

The exact commutation of equation (4b) for the same
mode is readily obtained

[σk, σ
†
k] = (1/N)

N∑
j=1

(|bj〉〈bj | − |cj〉〈cj |). (5)

If N is a very large number and most of the atomic
population rests in level |b〉 throughout evolution, by ap-
plying equation (1), then equation (4b) is approximately
reduced to

[σk, σ
†
k′ ] ' (1/N)

N∑
j=1

exp[−i(k − k′)zj ]. (6)

Assuming that the atoms are in a string and the average
interval of the adjacent atoms is d, which is much less than
the optical wavelength, i.e. kd� 1, one obtains

N∑
j=1

exp[ikzj] =
N∑
j=1

exp[ik(j − 1)d]

=
1− exp[ikNd]
1− exp[ikd]

≈ N exp[ikL]− 1
ikL

, (7)

where L = Nd is the length of the atomic medium. How-
ever, this result is also true for a volume of atomic gas
which is considered as a continuous medium

N∑
j=1

exp[ikzj] =
∫ L

0

N

L
exp[ikz]dz = N

exp[ikL]− 1
ikL

·

(8)

In the case that the length of the atomic medium is much
larger than the optical wavelength, we obtain

1
N

N∑
j=1

exp[ikzj] =
{

1 (k = 0),
0 (kL� 1).

(9)

By applying the above result to equation (6), one obtains
the bosonic commutation relation for the collective atomic
operators

[σk, σ
†
k′ ] ' δkk′ , (10)

where we should assume (k − k′)L � 1, or, equivalently,
λ − λ′ � λ2/(2πL). For the parameters used in the ex-
periment [1], L = 339 µm and λ = 589.6 nm, so that
λ2/(2πL) ≈ 0.163 nm, equation (10) is a good approxi-
mation for distinguishable modes.

We summarize the conditions for the collective atomic
operators satisfying the multimode bosonic commuta-
tion as

N � n, (11a)
λ,L � d, (11b)

∆λ/λ� λ/L, (11c)

where n is the number of atomic excitations and ∆λ is
the mode interval. The low excitation limit (11a) has al-
ready been shown in the previous paper [3]. The other
two conditions imposed on the radiation wavelength, equa-
tions (11b, 11c), assure the atomic ensemble containing
and distinguishing the coherence, respectively. We will see
in the next section that the atomic collective operators be-
have similarly to the creation and annihilation operators
of the electromagnetic field.

3 Single-mode atomic storage states

The “ground-level” state of the atoms can be compared
with the “vacuum” state, symbolized in reference [3] as

|C0〉 ≡ |b1b2 · · · bN〉. (12)

When the single-mode creation operators of the collective
atoms are applied to the “vacuum” state, one obtains

(σ†k)n|C0〉 =
1√
Nn

 N∑
j=1

|cj〉〈bj | exp(ikzj)

n

|b1b2 · · · bN 〉

=
1√
Nn

∑
{in}

′|ci1 · · · cin〉〈bi1 · · · bin |b1b2 · · · bN〉

× exp[ik(zi1 + · · ·+ zin)]

=
1√
Nn

∑
{in}

′|b1 · · · ci1 · · · cin · · · bN〉

× exp[ik(zi1 + · · ·+ zin)] (13)

where
∑′
{in} designates that, in the summation, any two

indices cannot be equal, because (|cj〉〈bj |)2|bj〉 = 0. We
note that some states in the summation of equation (13),
for which the sequence in the index set {in} is exchanged,
are the same and should be put together. For example,
(i1 = 1, i2 = 2, i3, ..., in) and (i1 = 2, i2 = 1, i3, ..., in) rep-
resent the same state. For an ensemble {in} of n elements,
there are n! permutations which form the same state. By
eliminating these repeated terms in the summation, equa-
tion (13) can be replaced by

(σ†k)n|C0〉 =
n!√
Nn

∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN 〉

× exp[ik(zi1 + · · ·+ zin)], (14)
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where
∑′′
{in} is defined as

∑
{in}

′′ ≡
N−n+1∑
i1=1

N−n+2∑
i2=2

· · ·
N−1∑

in−1=n−1

N∑
in=n︸ ︷︷ ︸

{i1<i2<···<in−1<in}

. (15)

The summation of equation (14) includes
(
N
n

)
= N(N −

1) · · · (N − n+ 1)/n! terms. Now, we define a normalized
atomic storage state

|Cnk 〉 =

√
n!

N(N − 1) · · · (N − n+ 1)

×
∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN 〉 exp[ik(zi1 + · · ·+ zin)].

(16)

Obviously, the atomic storage states with a different num-
ber of excitations are orthogonal to each other

〈Cnk |Cmk 〉 = δnm. (17)

In this definition, the superposition state of N collective
atoms includes any possible combination of n atoms being
in the level |c〉, while the corresponding spatial coherence
is recorded in the phase of the wavefunction. Physically,
it means that n photons can be stored by any combina-
tion of excited n atoms with an equal possibility, in cor-
respondence with the nonlocality for photons. However,
the coherent information of the field has been retained
in the probability amplitudes. Note that the atomic stor-
age state, with a definite wavevector k, is independent of
position z, which disappears in the summation.

By using definition (16), equation (14) becomes

(σ†k)n|C0〉 =

√
N(N − 1) · · · (N − n+ 1)

Nn

√
n!|Cnk 〉 ·

(18)

It is easy to check that

σ†k|Cnk 〉 =
√

1− n

N

√
n+ 1|Cn+1

k 〉 · (19)

The above two equations are exact. However, in the limit
N � n, the corresponding approximate expressions are

(σ†k)n|C0〉 '
√
n!|Cnk 〉, (20)

and

σ†k|Cnk 〉 '
√
n+ 1|Cn+1

k 〉 · (21)

The annihilation operator is applied to the “vacuum” state

σk|C0〉 = 0. (22)

In Appendix A, the general formula for the annihilation
operator is proved as

σk|Cnk 〉 =

√
1− n− 1

N

√
n|Cn−1

k 〉 '
√
n|Cn−1

k 〉 · (23)

Equations (19, 23) give immediately

σ†kσk|Cnk 〉 = (1− n− 1
N

)n|Cnk 〉 ' n|Cnk 〉, (24a)

σkσ
†
k|Cnk 〉 = (1− n

N
)(n+ 1)|Cnk 〉 ' (n+ 1)|Cnk 〉. (24b)

The approximations in equations (23, 24) are valid in the
limit N � n. Equation (24) verifies again the bosonic
commutation in this limit. If one admits both the bosonic
commutation (10) and equation (21), by using the com-
mutation

[σk, (σ
†
k)n] ' n(σ†k)n−1, (25)

it can also obtain

σk|Cnk 〉 '
√
n|Cn−1

k 〉 · (26)

The atomic storage states are also the eigenstates of the
population operators

N∑
j=1

(|bj〉〈bj |Cnk 〉 = (N − n)|Cnk 〉, (27a)

N∑
j=1

(|cj〉〈cj |Cnk 〉 = n|Cnk 〉 · (27b)

(see Appendix A)
According to Dicke’s definition (Eq. (47) in Ref. [15]),

the total angular momentum operators of the atomic en-
semble can be described as

Rk1 = (
√
N/2)(σ†k + σk), (28a)

Rk2 = (−i
√
N/2)(σ†k − σk), (28b)

R3 = (N/2)
(
σ†kσk − σkσ

†
k

)
, (28c)

R2 = R2
k1 +R2

k2 +R2
3 (28d)

= (N/2)
(
σ†kσk + σkσ

†
k

)
+ (N2/4)

(
σ†kσk − σkσ

†
k

)2

.

Using the exact relations of equations (19, 23), one obtains

R3|Cnk 〉 =
1
2

(2n−N)|Cnk 〉, (29a)

R2|Cnk 〉 =
1
2
N(

1
2
N + 1)|Cnk 〉 · (29b)

Therefore, the atomic storage state defined in equa-
tion (16) is the right Dicke state with the maximum co-
operation number r = N/2. The discussion in this section
exploits a new feature of Dicke state. The Dicke states
with the maximum cooperation number play the role of
number states in front of the collective lower and upper
atomic operators.

4 Multimode atomic storage states

The multimode case is concerned with how the informa-
tion of the multimode photons is distributed in the local
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atomic excitations |cj〉. To see it, we firstly consider a sim-
ple case — the multimode single-excitation atomic storage
state; that is, each mode contains only one excitation. We
apply the multimode creation operators to the “vacuum”
state

σ†k1
· · ·σ†kn |C

0〉 =
1√
Nn

N∑
i1=1

|ci1〉〈bi1 | exp(ik1zi1) · · ·

×
N∑

in=1

|cin〉〈bin | exp(iknzin)|b1b2 · · · bN 〉

=
1√
Nn

∑
{in}

′|b1 · · · ci1 · · · cin · · · bN〉

× exp[i(k1zi1 + · · ·+ knzin)]. (30)

This equation is apparently different to equation (13)
by the phase factors. Indeed, the exchanges of the in-
dices in the summation contribute to the same atomic
state, but, with different phase distributions. For example,
(i1 = 1, i2 = 2, i3, ..., in) and (i1 = 2, i2 = 1, i3, ..., in) dis-
play the same state |c1c2b3 · · · ci3 · · · cin · · · bN 〉, but with
the phase factors exp[i(k1z1 + k2z2 + k3zi3 + · · ·+ knzin)]
and exp[i(k1z2 + k2z1 + k3zi3 + · · · + knzin)], respec-
tively. Mathematically, for a given atomic collective state
|b1 · · · ci1 · · · cin · · · bN〉, it allocates n! phase factors due to
n! permutations for n elements. This means that an atom
in the level |cj〉, located at position zj , records the infor-
mation of all the modes. Because the field is global, each
atom in the medium experiences the field coherence of all
the modes, and, vice versa, the field of each mode affects
all the excited atoms.

To simplify the sign, we define

{kn} · {zin}l ≡ (k1zi1 + · · ·+ knzin)l, (31)

where {zin}l stands for the lth sequence of all the n! per-
mutations for n elements. Accordingly, equation (30) can
be written as

σ†k1
· · ·σ†kn |C

0〉 =
1√
Nn

∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN〉

×
n!∑
l=1

exp[i{kn} · {zin}l], (32)

where
∑′′
{in} has already been defined in equation (15).

In comparison with the single mode case, shown in equa-
tion (14), n-excitations in equation (32) share the phases
of n modes. We define a multimode single-excitation
atomic storage state as

|C1
k1
· · ·C1

kn〉 ≡
1√

N(N − 1) · · · (N − n+ 1)

×
∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN〉
n!∑
l=1

exp[i{kn} · {zin}l],

(33)

which has been normalized, as shown in Appendix B. With
the combination of equations (32, 33), we obtain

σ†k1
· · ·σ†kn |C

0〉=
√
N(N − 1) · · · (N − n+ 1)

Nn
|C1
k1
· · ·C1

kn〉

'|C1
k1
· · ·C1

kn〉 · (34)

Now, we discuss the general case of multimode atomic
storage states. s modes containing total n excitations can
be generated by

(σ†k1
)m1 · · · (σ†ks

)ms |C0〉 =

1√
Nn

 N∑
j=1

|cj〉〈bj | exp(ik1zj)

m1

· · ·

×

 N∑
j=1

|cj〉〈bj | exp(ikszj)

ms

|b1b2 · · · bN 〉 (35)

where m1 + · · ·+ms = n. By defining an index set as

{in} ≡ (i1, ..., im1 , im1+1, ..., im2 , ..., in−ms+1, ..., in),
(36)

equation (35) can be written as

(σ†k1
)m1 · · · (σ†ks

)ms |C0〉 =
1√
Nn

∑
{in}

′|b1 · · · ci1 · · · cin · · · bN〉

× exp[ik1(zi1 + · · ·+ zim1
) + · · ·

+ iks(zin−ms+1 + · · ·+ zin)]. (37)

Similarly, as in the previous cases, any particular atomic
collective state |b1 · · · cj1 · · · cjn · · · bN 〉 is related to n!
terms in the summation throughout all indices. But,
among these n! terms, the phase factor of each term will
repeatedly appear m1! · · ·ms! times because exchanges
of indices within a mode cause no difference. As a re-
sult, the remaining non-repeated phase factors terms are
n!/(m1! · · ·ms!). We define again

{k(ms)
s } · {zin}l ≡ (k1(zi1 + · · ·+ zim1

)

+ · · ·+ ks(zin−ms+1 + · · ·+ zin))l (38)

as one of these combinations with index l. Equation (37)
is written as

(σ†k1
)m1 · · · (σ†ks

)ms |C0〉 =
m1! · · ·ms!√

Nn

∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN 〉

×
n!/(m1!···ms!)∑

l=1

exp[i{k(ms)
s } · {zin}l]. (39)
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A general multimode atomic storage state can be de-
fined as

|Cm1
k1
· · ·Cms

ks
〉 ≡

√
m1! · · ·ms!

N(N − 1) · · · (N − n+ 1)

×
∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN 〉

×
n!/(m1!···ms!)∑

l=1

exp[i{k(ms)
s } · {zin}l], (40)

which has been normalized (see Appendix B). Finally,
equation (39) becomes

(σ†k1
)m1 · · · (σ†ks

)ms |C0〉 =

√
N(N − 1) · · · (N − n+ 1)

Nn

×
√
m1! · · ·ms!|Cm1

k1
· · ·Cms

ks
〉

'
√
m1! · · ·ms!|Cm1

k1
· · ·Cms

ks
〉, (41)

where the approximation is valid in the limit N � n. In
this limit, the creation of an excitation of mode l for a
multimode storage state is written as

σ†kl |C
m1
k1
· · ·Cmlkl

· · ·Cms
ks
〉 '

√
ml + 1|Cm1

k1
· · ·Cml+1

kl
· · ·Cms

ks
〉 · (42)

Similarly, as in the single mode case, by considering the
bosonic commutation (10) and equation (41), the annihi-
lation of an excitation of mode l is written as

σkl |Cm1
k1
· · ·Cmlkl

· · ·Cms
ks
〉 '

√
ml|Cm1

k1
· · ·Cml−1

kl
· · ·Cms

ks
〉 · (43)

Equations (18, 34, 41) imply that the state |C0〉 defined
in equation (12) represents a vacuum state not only for a
single mode but also for a multimode. Physically, it shows
that the ultracold collective atoms are able to store a mul-
timode field. As a result, we may derive

σ†k2
|Cm1
k1
〉 ' |Ck2C

m1
k1
〉, (44)

where |Cm1
k1
〉 can be understood as either a single mode

state or a multimode state with the vacuum for those
modes other than mode k1.

In the above theoretical description, we have shown
that the atomic storage states are a duplicate of the Fock
states of the electromagnetic field. The explicit expressions
of atomic storage states equations (16, 40) display duality
of particle and coherence. The excitations may appear ev-
erywhere with an equal probability in the medium, corre-
sponding with the nonlocality for photons. However, each
excitation takes the local phase factors of the single-mode,
or multimode, fields as the quantum probability ampli-
tude, therefore recording the coherence. Consequently, it
may establish the correspondence of two quantum system,
the field and the atomic ensemble. This provides the ba-
sis for complete storage of quantum information of the
bosonic field in an atomic medium.

5 Dark states in EIT

In the EIT configuration, the weak signal field interacting
resonantly with the atomic transition |a〉−|b〉 is described
by the field operator

Es(z, t) = (1/2)E0a(z) exp[i(ksz − ωst)] + h.c.

= (1/2)E0
∑
q

a(q) exp[iqz] exp[i(ksz − ωst)] + h.c., (45)

where E0 is the field amplitude per photon and ωs = cks.
c is the speed of light in a vacuum. The strong control
field, resonantly driving the atomic transition |a〉−|c〉 is
assumed as classical

Ec(z, t) =
~Ω

2℘ac
exp[i(kcz − ωct)] + c.c., (46)

where ℘ac is the dipole moment of the transition |a〉−|c〉
and ωc = ckc. In the interaction picture, the interaction
Hamiltonian is described as

HI = ~
∑
q

ωqa
†(q)a(q)

− ~
2

N∑
j=1

{
g
∑
q

a(q)|aj〉〈bj | exp[i(ks + q)zj ]

+ Ω|aj〉〈cj | exp[ikczj ] + h.c.} , (47)

where ωq = cq is the detuning of mode q with respect to
the resonant frequency ωs of the signal field. By defining
the atomic collective operators

ρab(q) =
1
N

N∑
j=1

|aj〉〈bj | exp[i(ks + q)zj ], (48a)

ρac(q) =
1
N

N∑
j=1

|aj〉〈cj | exp[i(kc + q)zj ], (48b)

the Hamiltonian (47) is written as

HI = ~
∑
q

ωqa
†(q)a(q)

− ~
2

{
gN

∑
q

a(q)ρab(q) +ΩNρac(0) + h.c.

}
· (49)

The new quantum field operator defined in reference [3] is
written as

ψq = cos θaq − sin θσq , (50)

where

cos θ = Ω/
√
Ω2 + g2N, sin θ = g

√
N/
√
Ω2 + g2N.

(51)



Kaige Wang and Shiyao Zhu: Storage states in ultracold collective atoms 287

The transition |b〉−|c〉 concerns both the absorption of a
signal photon and the emission of a driving photon. Re-
placing k by (ks + q)− kc in equation (2), one obtains the
annihilation operator σq of the collective atoms in EIT

σq =
1√
N

N∑
j=1

|bj〉〈cj | exp[−i(ks + q − kc)zj]. (52)

Correspondingly, k should also be replaced by ks + q − kc

in the atomic storage states. ψq satisfies the bosonian com-
mutation relation as long as σq does

[ψq, ψ
†
q′ ] = cos2 θ[aq, a

†
q′ ] + sin2 θ[σq, σ

†
q′ ] ' δqq′ . (53)

It has been shown in equation (51), that the parameter θ
is related to the strength of the control field. In the strong
and weak limits of the control field, ψq tends to aq and σq,
respectively.

According to reference [3], the dark state is defined as

|Dn
q 〉 =

1√
n!

(ψ†q)
n|0〉|C0〉, (54)

where |0〉 is the vacuum state of the signal field. The lowest
dark state is designated as |D0〉 ≡ |0〉|C0〉. The quasi-
particle in the dark state is called a polariton [3].

Using equation (18), one obtains the exact expression
of the dark state

|Dn
q 〉 =

n∑
m=0

(−1)m
√
n(n− 1) · · · (n−m+ 1)

m!

×
√
N(N − 1) · · · (N −m+ 1)

Nm

× cosn−m θ sinm θ|n−m〉|Cmq 〉

=
n∑

m=0

√
n(n− 1) · · · (n−m+ 1)

m!

×
√
N(N − 1) · · · (N −m+ 1)

Nm

× Ωn−m(−g
√
N)m

(Ω2 + g2N)n/2
|n−m〉|Cmq 〉 · (55)

The dark states described above are orthogonal to each
other since they have different quasiparticle numbers, but
are not normalized. Under the condition N � n, the dark
state can be approximately written as

|Dn
q 〉 '

n∑
m=0

(−1)m
√
n(n− 1) · · · (n−m+ 1)

m!

× cosn−m θ sinm θ|n−m〉|Cmq 〉

=
n∑

m=0

√
n(n− 1) · · · (n−m+ 1)

m!

× Ωn−m(−g
√
N)m

(Ω2 + g2N)n/2
|n−m〉|Cmq 〉 · (56)

The above expression of the dark state satisfies the nor-
malized orthogonal relation

〈Dn
q |Dm

q 〉 = δnm. (57)

Equation (56) shows that when the parameter θ is taken
to be 0 and π/2, the summation in the dark states reduces
to only the first and the last term

|Dn
q 〉 = |n〉|C0〉 for θ = 0, (58a)

|Dn
q 〉 = (−1)n|0〉|Cnq 〉 for θ = π/2, (58b)

respectively. Therefore, by varying θ adiabatically, the
quasi-particles can be transferred between the photon
state and the atomic storage state.

According to definition (54), one can obtain the exact
expression

ψ†q|Dn
q 〉 =

1√
n!

(ψ†q)
n+1|0〉|C0〉 =

√
n+ 1|Dn+1

q 〉 · (59)

It is easy to check

ψq|D0〉 = 0. (60)

As the same for the operator σq, with the help of the
bosonic commutation relation (53), one obtains for the
dark state (56)

ψq|Dn
q 〉 '

√
n|Dn−1

q 〉 · (61)

Moreover, the multimode dark state can be generated by

|Dn1
q1 · · ·D

ns
qs 〉 =

1√
n1! · · ·ns!

(ψ†q1)n1 · · · (ψ†qs)
ns |0〉|C0〉.

(62)

They can be treated just like the multimode photon num-
ber states.

In Appendix C, we have proven that, at the exact res-
onance, both the exact expression (55) and the approxi-
mate expression (56) of the dark states are the eigenstates
of the interaction Hamiltonian (49) with a null eigenvalue.
A pulse of monochromatic light has a narrow bandwidth,
and the detuning ωq from the carrier frequency ωs is small.
If we omit the first term in the Hamiltonian (49), the mul-
timode dark states consisting of the pulse are the eigen-
states of the interaction Hamiltonian.

Assume that, at the initial time, a signal pulse is at a
multimode state∑

{qs}
α(q1, · · · , qs)|n1 · · ·ns〉, (63)

while the cold collective atoms are, approximately, in the
ground state |C0〉. The combined system of the signal field
and the atoms is in the state

|Ψ(0)〉 =
∑
{qs}

α(q1, · · · , qs)|n1 · · ·ns〉|C0〉

=
∑
{qs}

α(q1, · · · , qs)|Dn1
q1 · · ·D

ns
qs 〉θ=0. (64)



288 The European Physical Journal D

When the control field is strong enough, the signal pulse
can maintain and transmit through the medium. Note that
|Ψ(0)〉 is also the eigenstate of the interaction Hamiltonian
with a null eigenvalue. If the control field is changed adia-
batically to a very small level at a later time t1, the state
of the system is also changed adiabatically to

|Ψ(t1)〉 =
∑
{qs}

α(q1, · · · , qs)|Dn1
q1 · · ·D

ns
qs 〉θ=π/2 (65)

=
∑
{qs}

(−1)n1+···+nsα(q1, · · · , qs)|0〉|Cn1
q1 · · ·C

ns
qs 〉·

It forms an associate state for |Ψ(0)〉. The whole of the
quantum information of the signal pulse has been stored
in the atomic medium, in the form of a “negative copy”, in
which each excitation changes a π-phase. As soon as the
control field returns to the previous level, the state (64) is
recovered. Conversely, if equation (65) is an initial state
generated in other model, by turning on the control field,
it will be converted to the corresponding optical field, en-
abling it to be seen.

6 Dynamic quantum transfer in macroscopic
matter

Due to the fact that the dark states are eigenstates of the
EIT interaction, quantum transfer processes between field
and matter are quasi-stationary by adiabatically changing
the control field. On the other hand, the transfer can be
performed in a dynamic way, which has been described
in the literature [7,8]. In this section, we study a general
description for dynamic transfer of quantum state between
field and ultracold matter. The interaction configuration
can be designed as, either, the parametric process or the
Raman transition [7], in which both a weak signal beam
and a strong control beam interact resonantly with two
levels of atoms.

For simplicity, we consider a single-mode interaction.
In the interaction picture, the effective interaction Hamil-
tonian is written as

HI = ~Ω(aσ† + a†σ), (66)

where Ω is the Rabi frequency of the control beam, as-
sumed as classical. The collective atomic operator σ is
defined by equation (3) and behaves boson-like in the low
excitation limit. The model is well-known as a coupled
harmonic oscillator, and can be solved exactly. Here we
illustrate this model again from a new viewpoint by intro-
ducing a very simple method for the exact solution of the
state-vector evolution. For this model, it is easy to obtain
the evolution of the operators in the Heisenberg picture,(

a(t)
σ(t)

)
=
(

cosΩt −i sinΩt
−i sinΩt cosΩt

)(
a(0)
σ(0)

)
· (67)

With this method, if the initial state can be written as
|Ψ(0)〉 = f(a(0), σ(0))|Θ(0)〉, while the evolution of the

state |Θ(0)〉 is already known to be |Θ(t)〉, we obtain

|Ψ(t)〉 = U(t)|Ψ(0)〉 = U(t)f(a(0), σ(0))|Θ(0)〉
= U(t)f(a(0), σ(0))U−1(t)U(t)|Θ(0)〉
= f(a(−t), σ(−t))|Θ(t)〉, (68)

where U(t) = exp(−iHIt/~). An initial Fock state
for the signal photons m and the atomic collec-
tive excitations n is represented by |m,Cn〉 =
(1/
√
m!n!)[a†(0)]m[σ†(0)]n|0, C0〉. Since the evolution of

the vacuum state, as |Θ(0)〉 in equation (68), is known to
be |Θ(t)〉 = exp(−iHIt/~)|0, C0〉 = |0, C0〉, we obtain the
evolution for an initial Fock state |m,Cn〉

|Ψmn(t)〉 = (1/
√
m!n!)[a†(−t)]m[σ†(−t)]n|0, C0〉, (69)

where the dynamical operators are written as

a†(−t) = U(t)a†U−1(t) = a† cosΩt− iσ† sinΩt, (70a)

σ†(−t) = U(t)σ†U−1(t) = σ† cosΩt− ia† sinΩt, (70b)

where a† ≡ a†(0) and σ† ≡ σ†(0). According to equa-
tion (69), the exact evolution for an arbitrary initial state∑
ξmn|m,Cn〉 is therefore

∑
ξmn|Ψmn(t)〉.

The state |Ψmn(t)〉 described by equation (69) evolves
periodically with the fundamental frequency Ω and con-
serves the total particle number. For example, in the sim-
plest case of only a single excitation |1, C0〉, the time
evolution is |Ψ10(t)〉 = cosΩt|1, C0〉 − i sinΩt|0, C1〉. The
entanglement between two subsystems increases in time
and reaches a maximum at Ωt = π/4. Then, the entan-
glement decreases and the excitation transfers completely
from one subsystem to another at Ωt = π/2. In general,
if the initial state has m signal photons and no excitation
for atoms |m,C0〉, the time evolution is written as

|Ψm0(t)〉 = (1/
√
m!)[a†(−t)]m|0, C0〉

= (1/
√
m!)[a† cosΩt− iσ† sinΩt]m|0, C0〉

=
m∑
j=0

(−i)j
√

m!
j!(m− j)! (cosΩt)m−j

× (sinΩt)j |m− j, Cj〉 · (71)

The evolution states can be called “dynamic polaritons”,
since they are compatible with the “stationary polaritons”
defined by equation (56). At the times Ωt = (1/2)π, π
and (3/2)π, the evolution state has been de-entangled to
(−i)m|0, Cm〉, (−1)m|m,C0〉, and im|0, Cm〉, respectively.
This means, at certain times, the entanglement formed in
the dynamical process can be cancelled and the excitations
are transferred completely from one subsystem to another.
When an initial state is an arbitrary superposition of Fock
states for the signal beam and the “vacuum” for the ultra-
cold atoms, i.e. |Ψ(0)〉 = |Φ,C0〉 where |Φ〉 =

∑
αm|m〉,

it evolves to the states |0, Φ(−i)〉, |Φ(−), C0〉, and |0, Φ(i)〉
at the times Ωt = (1/2)π, π and (3/2)π, respectively, and
comes back to the original at Ωt = 2π. Here we define
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three states associated with |Φ〉 =
∑
αm|m〉

|Φ(±i)〉 =
∑

(±i)mαm|m〉, |Φ(−)〉 =
∑

(−1)mαm|m〉.
(72)

Obviously, these associate states have the same particle
distribution, but with different phase shifts in amplitudes.
As a matter of fact, the phase factor in the superposition
can be observed macroscopically. For instance, if |Φ〉 is a
coherent state |α〉, one obtains the coherent states again
for the associate states with a particular phase shift, i.e.
|Φ(±i)〉 = | ± iα〉 and |Φ(−)〉 = | − α〉. As for an arbitrary
state, it is also true by means of the expectation value
of the amplitude operator, such that 〈Φ(±i)|a|Φ(±i)〉 =
±i〈Φ|a|Φ〉 and 〈Φ(−)|a|Φ(−)〉 = −〈Φ|a|Φ〉. Though, in gen-
eral, these associate states are not identical to the original,
owing to a phase shift; the quantum information of the
original state can still be faithfully preserved. It looks like
a photograph and the corresponding negative copy. The
associate states |Φ(±i)〉 and |Φ(−)〉 can be seen as “orthog-
onal” and “negative” copies of a quantum “picture” |Φ〉.

In the dynamic quantum transfer, a quantum state of
the signal field can be stored in and then retrieved from
a medium by turning off and on the control field at a
certain time. Because the dynamic polariton state defined
by equation (71) is the eigenstate of the free Hamiltonian,
it will be preserved while the interaction is turning off.
Similarly, the model can be extended to the multimode
case provided the conditions for the radiation wavelength
equation (11) is satisfied. Thus, coherent information of
the optical field can be transferred simultaneously.

Finally, we indicate that, for a proper transfer in this
model, collective atoms must be prepared in an atomic
storage state. For ultracold matter, its initial state can
be considered as the vacuum state |C0〉 approximately.
If, at the initial time, the field is at an arbitrary state
|Φ1〉 while collective atoms have been prepared in a su-
perposition state |Φ2〉 =

∑
βm|Cm〉, |Φ1, Φ2〉 will evolve

to the corresponding states |Φ(−i)
2 , Φ

(−i)
1 〉, |Φ(−)

1 , Φ
(−)
2 〉 and

|Φ(i)
2 , Φ

(i)
1 〉 at the certain times mentioned above. It dis-

plays a complete swapping of quantum states for the cou-
pled harmonic oscillators.

7 Conclusion

In conclusion, we define collective atomic operators and
atomic storage states by containing spatial coherence and
illustrate the conditions under which the multimode col-
lective atomic lower and upper operators are boson-like.
We indicate the fact that the atomic storage states shown
by definition (16) are Dicke states with the maximum co-
operation number. The new feature for these Dicke states
is that, in the low excitation limit for a large number of
atoms, they behave as the Fock states of an electromag-
netic field. The complete description and the deductive
explicit expressions for the atomic storage states present
better physical understanding of why the atomic ensemble

can record fully the quantum information, both the exci-
tation and the coherence, of an optical electromagnetic
field. In addition to adiabatic quantum transfer by means
of dark states in EIT, we discuss the mechanism of dy-
namic quantum transfer via dynamic polaritons which is
formed by the fundamental interaction between the field
and ultracold matter. A combination of adiabatic and dy-
namic schemes may find more applications in quantum
information technology.

This research was supported by the National Fundamental Re-
search Project (973) No. 2001CB309310 and the National Nat-
ural Science Foundation of China, Project No. 10074008.

Appendix A

First, we derive the exact equation (23). By applying def-
initions (2) and (16), it gives

σk|Cnk 〉 =
1√
N

N∑
l=1

|bl〉〈cl| exp[−ikzl]

√
n!

N · · · (N − n+ 1)

×
∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN 〉

× exp[ik(zi1 + · · ·+ zin)]. (A.1)

When the operator
∑N
l=1 |bl〉〈cl| applies to a particular

state |b1 · · · ci1 · · · cin · · · bN 〉, it produces a superposition
of n states in which |cik〉 is sequentially replaced by |bik〉.
After this operation, equation (A.1) is a summation of
n ×

(
N
n

)
= N(N − 1) · · · (N − n + 1)/(n − 1)! states,

in which n − 1 atoms are populated in the level |c〉.
It is in fact N − n + 1 times |Cn−1

k 〉. For example,
a particular state in |Cn−1

k 〉, say, |c1 · · · cn−1bn · · · bN〉,
comes from N − (n− 1) states, |c1 · · · cn−1cnbn+1 · · · bN〉,
|c1 · · · cn−1bncn+1 · · · bN 〉, ..., |c1 · · · cn−1bnbn+1 · · · cN 〉, in
|Cnk 〉. Thus, equation (A.1) is written as

σk|Cnk 〉 =
1√
N

√
n!

N · · · (N − n+ 1)
(N − n+ 1)

×
∑
{in−1}

′′|b1 · · · ci1 · · · cin−1 · · · bN〉

× exp[ik(zi1 + · · ·+ zin−1)]

=
1√
N

√
n!

N · · · (N − n+ 1)
(N − n+ 1)

×
√
N · · · (N − n+ 2)

(n− 1)!
|Cn−1
k 〉

=

√
N − n+ 1

N

√
n|Cn−1

k 〉 · (A.2)
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Then, we prove equations (27). Equation (27a) is writ-
ten as

N∑
l=1

(|bl〉〈bl|Cnk 〉 =

√
n!

N · · · (N − n+ 1)

×
N∑
l=1

∑
{in}

′′|bl〉〈bl|b1 · · · ci1 · · · cin · · · bN〉

× exp[ik(zi1 + · · ·+ zin)]

=

√
n!

N · · · (N − n+ 1)

×
N∑
l=1

∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN〉

× exp[ik(zi1 + · · ·+ zin)]
× (1− δli1) · · · (1− δlin). (A.3)

Because all the indices of ik are not equal to one another,
one has

(1− δli1) · · · (1− δlin) = 1− (δli1 + · · ·+ δlin)

+ (δli1δli2 + · · · )− · · · = 1− (δli1 + · · ·+ δlin). (A.4)

Substituting equation (A.4) into equation (A.3), one ob-
tains

N∑
l=1

(|bl〉〈bl|Cnk 〉 = (N − n)|Cnk 〉 · (A.5)

Equation (27b) is proved as

N∑
l=1

(|cl〉〈cl|Cnk 〉 =

√
n!

N · · · (N − n+ 1)

×
N∑
l=1

∑
{in}

′′|cl〉〈cl|b1 · · · ci1 · · · cin · · · bN 〉

× exp[ik(zi1 + · · ·+ zin)]

=

√
n!

N · · · (N − n+ 1)

×
N∑
l=1

∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN〉

× exp[ik(zi1 + · · ·+ zin)]
× (δli1 + · · ·+ δlin)

= n|Cnk 〉 · (A.6)

Appendix B

In this appendix, we calculate the normalized coefficient
of the multimode storage states. A multimode single-

excitation state is defined as

|C1
k1
· · ·C1

kn〉 ≡ α
∑
{in}

′′|b1 · · · ci1 · · · cin · · · bN〉

×
n!∑
l=1

exp[i{kn} · {zin}l]. (B.1)

The probability of each state in the above superposition is∣∣∣∣∣
n!∑
l=1

exp[i{kn} · {zin}l]
∣∣∣∣∣
2

=
n!∑
l,j

exp[i{kn}·({zin}l−{zin}j)]

= n! +
n!∑
l6=j

exp[i{kn} · ({zin}l − {zin}j)]. (B.2)

Then, we sum all these probabilities. For the first term of
equation (B.2), it is simply∑

{in}

′′n! = n!
N(N − 1) · · · (N − n+ 1)

n!

= N(N − 1) · · · (N − n+ 1). (B.3)

In the multimode case, one must find a mode with kj 6= 0.
By using equation (9), the summation

∑ ′′
{in} to the sec-

ond term of equation (B.2) vanishes. Therefore, we obtain

α =
1√

N(N − 1) · · · (N − n+ 1)
· (B.4)

Similarly, for a general multimode storage state defined by
equation (40), the probability of finding a single state is∣∣∣∣∣∣
n!/(m1!···ms!)∑

l=1

exp[i{k(ms)
s } · {zin}l]

∣∣∣∣∣∣
2

=

n!/(m1!···ms!)∑
l,j

exp[i{k(ms)
s } · ({zin}l − {zin}j)]

=
n!

m1! · · ·ms!
+
n!/(m1!···ms!)∑

l6=j
exp

[
i{k(ms)

s }

× ({zin}l − {zin}j)] . (B.5)

The summation to the first term of the above equation
gives∑
{in}

′′ n!
m1! · · ·ms!

=

n!
m1! · · ·ms!

N(N − 1) · · · (N − n+ 1)
n!

=
N(N − 1) · · · (N − n+ 1)

m1! · · ·ms!
· (B.6)

With the same reason, the summation to the second term
vanishes. The normalized coefficient is therefore

α =

√
m1! · · ·ms!

N(N − 1) · · · (N − n+ 1)
· (B.7)
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Appendix C

We define a new collective atomic state in which n atoms are in the level |c〉 whereas one atom is in the level |a〉

|A1
q , C

n
q 〉 ≡

√
n!

N(N − 1) · · · (N − n)

×
∑
l6={in}

∑
{in}

′′|b1 · · ·al · · · ci1 · · · cin · · · bN〉 exp[i(ks + q − kc)(zi1 + · · ·+ zin)] exp[i(ks + q)zl], (C.1)

where
∑
l6={in} designates the summation for index l which cannot be taken as i1, ..., in. We have already indicated

that, the state |Cnq 〉 is a superposition of N(N − 1) · · · (N −n+ 1)/n! possible states |b1 · · · ci1 · · · cin · · · bN 〉 in which n
atoms are in the level |c〉 whereas the remaining N − n atoms are in the level |b〉. For one of these states, each of the
N−n atoms being in the level |b〉 can be excited to the level |a〉. So the state |A1

q, C
n
q 〉 includes N(N−1) · · · (N−n)/n!

such possible states |b1 · · · al · · · ci1 · · · cin · · · bN 〉 with equal possibility. The state |A1
q , C

n
q 〉 has been normalized. The

phase factor related to the excited atom l being in level |a〉 is exp[i(ks + q)zl], because the transition of the level |a〉
to the ground level |b〉 is connected with the signal field of the wavevector ks + q. State (C.1) can be obtained by the
following operation

Nρac(0)|Cnq 〉 =

(
N∑
l=1

|al〉〈cl| exp[ikczl]

)
|Cnq 〉

=

√
n!

N · · · (N − n+ 1)

N∑
l=1

∑
{in}

′′|al〉〈cl|b1 · · · ci1 · · · cin · · · bN〉 exp[i(ks + q − kc)(zi1 + · · ·+ zin)] exp[ikczl]

=

√
n!

N · · · (N − n+ 1)

∑
l6={in−1}

∑
{in−1}

′′|b1 · · · al · · · ci1 · · · cin−1 · · · bN 〉

× exp[i(ks + q − kc)(zi1 + · · ·+ zin−1)] exp[i(ks + q)zl]

=

√
n!

N · · · (N − n+ 1)

√
N · · · (N − n+ 1)

(n− 1)!
|A1
q , C

n−1
q 〉 =

√
n|A1

q , C
n−1
q 〉, (C.2)

where the atomic operator ρac(0) has been defined in equation (48b). Similarly, we have

Nρab(q)|Cnq 〉 =

(
N∑
l=1

|al〉〈bl| exp[i(ks + q)zl]

)
|Cnq 〉

=

√
n!

N · · · (N − n+ 1)

N∑
l=1

∑
{in}

′′|al〉〈bl|b1 · · · ci1 · · · cin · · · bN〉 exp[i(ks + q − kc)(zi1 + · · ·+ zin)] exp[i(ks + q)zl]

=

√
n!

N · · · (N − n+ 1)

∑
l6={in}

∑
{in}

′′|b1 · · · al · · · ci1 · · · cin · · · bN 〉 exp[i(ks + q − kc)(zi1 + · · ·+ zin)] exp[i(ks + q)zl]

=

√
n!

N · · · (N − n+ 1)

√
N · · · (N − n)

n!
|A1
q, C

n
q 〉 =

√
N − n|A1

q, C
n
q 〉 · (C.3)

The two interactions induced by two fields in the interaction Hamiltonian interfere destructively for the dark state.
Using equations (C.2, C.3), for the exact expression of the dark state equation (55), one obtains

ΩNρac(0)|Dn
q 〉 = ΩNρac(0)

n∑
m=0

(−1)m
√
n(n− 1) · · · (n−m+ 1)

m!

√
N(N − 1) · · · (N −m+ 1)

Nm

× Ωn−m(g
√
N)m

(Ω2 + g2N)n/2
|n−m〉|Cmq 〉

=
n∑

m=1

(−1)m
√
n(n− 1) · · · (n−m+ 1)

(m− 1)!

√
N(N − 1) · · · (N −m+ 1)

Nm

Ωn−m+1(g
√
N)m

(Ω2 + g2N)n/2
|n−m〉|A1

q , C
m−1
q 〉 (C.4)
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and

gNa(q)ρab(q)|Dn
q 〉 = gNa(q)ρab(q)

n∑
m=0

(−1)m
√
n(n− 1) · · · (n−m+ 1)

m!

√
N(N − 1) · · · (N −m+ 1)

Nm

× Ωn−m(g
√
N)m

(Ω2 + g2N)n/2
|n−m〉|Cmq 〉

=
n−1∑
m=0

(−1)m
√
n(n− 1) · · · (n−m)

m!

√
N(N − 1) · · · (N −m)

Nm+1

Ωn−m(g
√
N)m+1

(Ω2 + g2N)n/2
|n−m− 1〉|A1

q, C
m
q 〉 · (C.5)

If we set index m → m + 1 in equation (C.4), it is the exact same as equation (C.5) but with an opposite sign.
Therefore, one obtains

[gNa(q)ρab(q) +ΩNρac(0)]|Dn
q 〉 = 0. (C.6)

Resulting in, for the exact resonant mode q = 0, the dark states |Dn
q=0〉 being the eigenstates with the null eigenvalue

of the interaction Hamiltonian (49). We note that equations (C.4–C.6) hold exactly for the exact expression of the dark
state (55). For the approximate expression of the dark state (56), equations (C.4–C.6) are also satisfied as long N � n.
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